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ORBITAL AND PERICENTRIC REFERENCE SYSTEMS 
IN THE SCHWARZSCHILD FIELD* 

1u.P. VYBLYI and N.N. KOSTXUKOVICH 

Reference systems generalizing orbital and perigee coordinates systems, widely used 
in the Newtonian theory of gravitation for solving inertial navigation problems,are 
introduced in the Schwarzschild gravitational field using the tetrad formalism of 
the General Relativity Theory (GRT). Exact expressions are obtained for the angular 
precession velocity of the gyroscope in these reference systems in the case of its 
arbitrary geodesic motion, and the physical components of the dipole magnetic field 
intensity, which are used for the magnetic control of satellite orientation, are 
determined. It is shown that gravitational corrections of magnetic field intensity 
can, in principle, be measured by contemporary quantum magnetometers. 

The main problem of satellite inertial navigation is the determination of physical pheno- 
mena directly in the accompanying preference system (RS) with subsequent conversion (whenever 
required) to any other RS /1,2/. In practice, a specific orientation of the measuring equip- 
ment in orbital motion in the gravitational field and its stabilization in the specified posi- 
tion during prolonged period5 of time are required. Because of this, the respectiveRS(orbita1, 
perigee, etc.) are of the form of moving coordinate systems with origin at the satellitecenter 
of mas5 and specifically oriented relative to the orbit plane. Thus in an orbital RSthe first 
coordinate axis is directed along the instantaneous radius vector, and the second and third 
along the transverse and normal to the orbit plane, while in the pericentric RS the orbital 
orientation of axes is fixed in one of the pericenters of the orbit and remains unchangedalong 
the trajectory /3,4/. 

Owing to the increasing interest in the investigation of GRT effect5 with the use of 
satellites it is expedient to introduce in it the indicated RS concepts. In the theory of 
relativity the RS is defined by the Lorentz basis eik.) whose projections on the axes of a 
global system of coordinates xLI are tetrads /I$, /5/. The indices denoted by letters at the 
beginning of the Latin and Greek alphabets assume the values 1, 2, 3, while those beginning 
from and including k and x have the values 0, 1, 2, 3. Indices of quantities related to the 
Lorentz basis are enclosed in brackets. Hence the successive solution of problemsof inertial 
navigation considered in the GRT necessitates the use of the tetrad formalism which enables 
us to introduce the RS with the required orientation of the three-dimensional triad !$,. In 
the GRT reference systems with triad vectors tangent to coordinate lines are often used. How- 
ever this may introduce unimportant effects related to constant variation of the triad orienta- 
tion along the trajectory, and impede the analysis of investigated phenomena. 

The aim of the present investigation is the introduction using the tetrad formalism of 
RS accompanying /the satellite/ with orbital and pericentric triad orientation in any arbitr- 
ary geodesic motion of the reference body in the Schwarzschild field, and for determining in 
them of GRT corrections to the gyroscope motion andthemeasured components of the dipole 
magnetic field, since gyroscopes and magnetometers are generally used for orienting and stabil- 
ising satellites. It is necessary to take into consideration all possible perturbations af- 
fecting the gyroscope, and in the case of magnetic orientation control it is necessarytoknow 
components of the measured magnetic field as functions of orbital parameters (see, e.g., /3, 
4,6/l. 

1. Let the reference body of the RS accompanying the satellite moves along a geodesic 
in the Schwarzschild field with metric 

g,, = diag (-amZ, u2, r*, r2 sin2 e), a = (1 _ ~m/Jp 

We define its 4-velocity components as follows: 

uIL = (-5, aA, --y, 4, ,42 z &g - 1 - fI+Z 
* IP = v2 + h2/sinS8 
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The meaning of constants e,1'( and h is that of total specific energy of the testmass, 1~s 
orbital moment, and of its projection on the axis 0 =n, respectively. The signs of \‘ and 
h are determined by the initial conditions. 

We introduce in the orbital plane the polar system of coordinates (r,(I)) and define angle 
@ by the relation 

Solution 
for the orbit 

j-‘J 0‘ -- /I. @’ -z &II/& -_: (fp /. Lii “qlci”~)vi (1.21 

of the equations of motion by the method of quasi-conical secticn /Y,8/ yields 
an equation of the form 

r =: nw-1, 10 = 1 i e cos 'If (@) (1.3) 

are the eccentricity and focal parameters, and the true anomaly Y'is implicitly where e and P 
defined by the quadrature 

The constants of motion t: and ii are related to orbital parameters by formulas 

where i is the angle of inclination of the orbit plane to the equator. 
Solution of the system of equations gfiV ~~~‘/~~‘,~~~~~,,~. where n(h)(n) =y diag i-1. .I 1, i-1, :-I). 

that determines the tetrad 6$) requiwes further conditions (calibration /S/i that determine 
properties of the RS motion [calibration of the monad i&j 1, and of the orientationofitsthree- 
dimensional basis.vectors (calibration of the triad h;,,). Calibration conditions are speci- 
fied on the basis of various physical, geometric and other considerations /5/. However, since 
the selection of calibration defining the orbital and pericentric orientation of the triad 
(particularly in the case of concomittance) is not obvious, we shall first construct tetrads 
of the required orientation for defining the RS fixed in relation to the global coordinate 
system. In this case the monad calibration is of the form ha,) = 0 and defines the tensor 

yv" = ‘s,.)' - /& ii'?) (i,) i ) I’“‘L _ :‘,,* _; 0. yl,q I &p 

that projects the 4-vectors into the $-space orthogonal to the monad and proper for the RS. 
We introduce at every point of the orbit a triad whose orientation coincides with that 

of the orbital RS used in the Newtonian theory of gravitation, taking into account that the 
three-dimensional velocity vector IL' yP IL” and the three-dimensional vector /c" yv@ b,” in 
the direction of the present radius vector of the test mass lie in the orbit plane. We select 
/iw as the first, and ~tt)e = ~~-'/~~~i~u~~i.~~~ and f@ ~~-'f:e~'"~~~G as the second and third vectors of 

the space basis. Here y = diet yaB. FQ~C _ &,, ET~~LO , where E?,tho is the Levi-Civita symbol. 
With this definition vector VI M is oriented in the direction of motion and lies in the orbit 
plane, and 12~ is orthogonal to it. For the fixed orbiting tetrad, after normalization of the 
introduced vectors, we obtain 

h@)" = (a, 0, 0, 01, hf*,l-L = (0, a-', 0, 0) (1.6) 

~~)=~~.o,-~,~) 

-A) Br s1n 0 

Using the invariant determination of the angle we obtain the matrixofdirectionalcosines 

of angles between vectors of tetrad (1.6) and vectors tangent to coordinate lines of the 

spherical coordinate system 

(1.7) 

- cos i 

- sin i co9 @ 

which, after conversion to Cartesian coordinates, is usually applied in the Newtonian theory 

of gravitation for the introduction of orbital RS /X,4,6/. 
Acting on (1.6) by the matrix of local turn 
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defined by the polar angle @ in (1.41, we obtain the fixed pericentric tetrad 

(1.81 

with constant triad orientation coincident with the initial (orbital) orientation at the in- 
stant of passing the first pericenter of orbit (@ -0). Thus the invariability of vector 
hg@‘ means that the invariant angle between the present radius vector and vector h(,,*@ is at 
any point (T, CD) of the orbit equal to the polar angle CD, while for vector hc?)*v the respect- 
ive angle is equal n/2-- @. The fixed tetrads (1.6) and (1.8) used here as auxilliary in the 
construction of accompanying RS are also useful in investigations of moments of external forces 
acting on a satellite (see, e.g., /4/j. 

To pass to an accompanying RS with the same triad orientation we apply the local Lorentz 
transform (local boost) of the form /l/ 

whose parameters are tetrad components of the 4-velocity reference body fixed in the RS (1.6) 
and (1.8) 

Having acted on (1.6) by transform (1.9) with parameters Zl@) , for the accompanyingtetrad 
with the triad orbital orientation we obtain 

(1.101 

which for the equatorial motion of the reference body, after the transposition of the second 
and third columns, becomes the same as the "normal-diagonal" tetrad /9/, The application of 
transform (1.9) with parameters n*@j to (1.8) yields for the accompanying pericentric tetrad 

(1.11) 

In the tetrad formalism the RS properties are determined by the dynamic characteristics 
expressed in terms of Ricci rotation coefficients W)~n)(rn) = h~@z~m~vVvJzU(,~~ /lo/, where V, is the 
covariant derivative. The nonzero components Y(k)(n)(m) of tetrads (1.10) and (1.11) are of the 
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(1.13) 

In the derivation of (1.13) the relation between @,v and h implied by (1.71, was used. 
It follows from (1.12) and (1.13) that far the introduced RS the accelexation vector F(a) r- 
Y(o)(a)(o) and the angular rotation velocity tensor &)(a) = Y(o)[(a)(b)l are zero, which shows that 
these RS are free falling and locally nonrotating, while the deformation rate tensor &n)(s) = 
-Y~a)((a)tbN is nonzero. 

2. It was shown in /ll/ that according to the GRT a gyroscope in orbital motion must 
have a geodesic precession of the vector of its angular momentum (spin). We shall assume 'chat 
gyroscope spin does not disturbs the geodaticityof its motion. Then using Papapetru's equa- 
tions /5,l.3./, we find that the gyroscope precession is determined in the accompanying RS by 
the equation 

for the tetrad 3-vector spin Li'@) =h,@)S@ 
The precession angular velocity 

where &@)@) .= e{i{(2)(3) =-I), is not a 3-vector one relative to local three-dimensional turns, 
hence the quantity Q = (~~'~~~~)~" depends on the triad orientation. 

Tetrads with a triad tangent to coordinate lines were generally used in the calculation 
of (2.1) (see, e.g., /11-114/), and only approximate expressions for Q@) or special types of 
orbits (circular or radial) were considered. An exact formula was obtained in /15/ fox the 

precession angle, which in the particular case of the circular orbit differs from that given 
in /L6/. Hence it is interesting to obtain an exact expression far the angular velocity and 

the precession angle of a gyroscope in the case of arbitrary orbits of form (I.31 and various 

triad orientation. 
The determination of I;ac@ in the accompanying orbital. and pericentric RS with 

(1.13) taken into account yields for the single nonsexo angular velocity component 

11.12) and 
the expres- 

sion 

12.2) 

After the substitution of sandH defined in (1.5) for any arbitrary quasi-conical orbits 
of form (1.3) * we obtain for the angular velocity of the gyroscope precession the following 
exact expressions in terms of functions of orbital parameters of its trajectory: 



Taking into account G%') =J~,C~)dsfi = & and (1.2), we obtain for the precession angles 

during the time the gyroscope moves between points (rl,Y,) and (r2, y2) of orbit (1.3) the ex- 
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pressions 

(2.4) 

(2.5) 

For a single turn of circular motion (e = 0, p = &we have 

B = -2s (1 - 3m/Rf’i’, @* = 2% + B (2.6) 

where the expression for @*is the same as the exact expression in /16/ derived by another 
method, while the respective approximate results agree with those in /ll-14/. xt follows 
from (2.2) that in the case of circular motion the quantity 52*(s) increases as theorbitradius 
decreases, and at the boundary of circular orbit existence (R = 3m) becomes infinite, while 
Q(3) infinitely increases only when &-to. 

The comparison of tetrads (2.4) and (2.5) shows that the pericentric orientation of the 
triad is preferable for analyzing gyroscope precession , since it makes possible the elimina- 
tion of the 'Iapparent" precession at angular velocity NIP induced by the rotation of the 
orbital triad relative to the pericentric. 

Using tetrads (1.10) and (1.11) , we obtain for the physical components of an arbitrary 
electromagnetic field the following expressions in the form of functions of orbitalparameters 
of the magnetometer trajectory: 

Let us apply these expressions in the case of a dipole magnetic field which is a first 
approximation model of the Earth field, using the orbital RS. ContributionoftheSchwarzschild 
metric to physical components of intensity Hca,. which is due to the use of tetrads,mayprove 
to be comparable to the direct effect of phone metricon the solution of Maxwell's general- 
covariant equations. Hence it is reasonable to take into consideration that effect on the 
dipole magnetic field of the Earth. For the global components of the electromagnetic field 
tensor F,,v in the spherical coordinate system, using the data of /17/, we obtain 

pzz =* H,-_ WcosreSine f(rI 
(2.9) 

f(r)=+[Ina-+(I++)] 

F 3~==~inBHn=~~(r), g(r)=G(i+a*-$Ina) 

Substituting (2.9) into (2.7) we obtain the observed magnetic field components in the accomp- 
anying orbital RS 

H,,, = w N/(r), H(Z) = - l"";;; g(r), H(3) = -$ g(r) (2.10) 

To compare (2.10) with formulas derived without allowance for the effect of gravitation 
on H{*> and on RS, we express the respective intensity components in the "Newtonian" tetrad 
obtained from (1.6) with u =i 
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which coincides with the formulas obtained in /6/ with the use of matrix (1.7). Corrections 
due to the GRT (to the gravitation field and accelerated motion of the RS) are determined by 

the differences of (2.10) and (2.11) 

6 =+p[Nf(r)-I], 1 8, = * [I - g(r)] ) ~.?=~II-~ag(r)l (2.12) 

and in thepericentric RS are of the same order of magnitude. 

Assuming the dipole magnetic moment of the Earth to be p= 8.10z5 Hz..cm3, we 
have from (2.12) that in the case of a satellite in circular orbit 500 km above the Earth 

surface the GRT corrections are -2.10~I" Hz , i.e. they are at the limit of modern mag- 

netometers sensitivity. However in the case of an orbit of radius 4R0 around the Sun (as in 
the planned "solar probe" /18/) these corrections increase to 5.10-8 Hz, and can be 

measured by the high-precision quantum magnetometers that are intended for satellites in re- 

lativistic experiments /19/. 
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